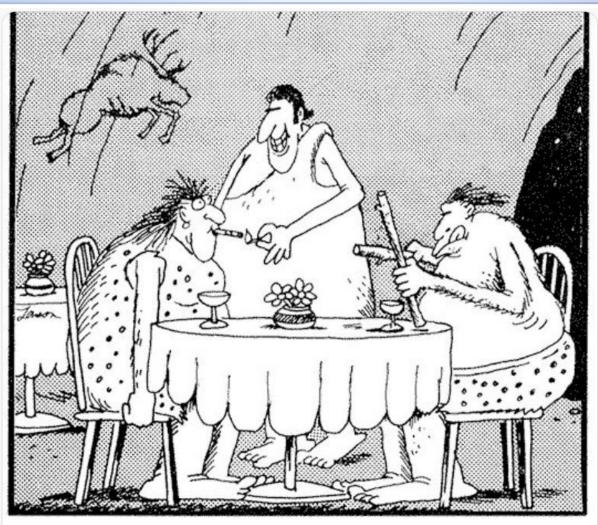


Microbial Contamination and Control 03-04 May Northbrook, IL

Bio-Fluorescent Particle Counters and Industry Support for the Technology

Allison Scott Facilitator, M³ Collaboration Principal Scientist, MicronView LLC

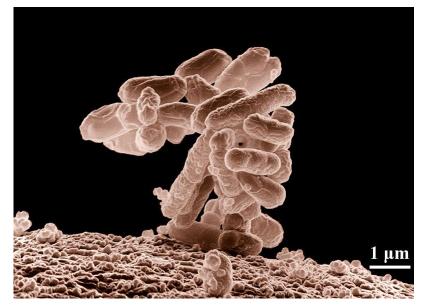

Topics of discussion

- Real time, bio-fluorescent particle counting (BPFC) technology
 - Principle of operation
 - Applications
- Industry support for BFPC
 - Working groups and collaborations
 - Publications

Microbial Contamination and Control

03-04 May Northbrook, IL

As Thak worked frantically to start a fire, a Cro-Magnon man, walking erect, approached the table and simply gave Theena a light. The Far Side by Gary Larson

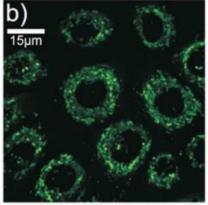

3

Sciences

Bio-Fluorescent Particle Counters (BFPC)

- BFPCs are a form of enhanced particle counter
- BFPCs use the detection of:
 - Scattered light for particle enumeration
 - Intrinsic fluorescence for classification of particles as biofluorescent particles (BFP) or inert

Electron micrograph of a cluster of *Escherichia coli* bacteria magnified 10,000 times - Wikipedia

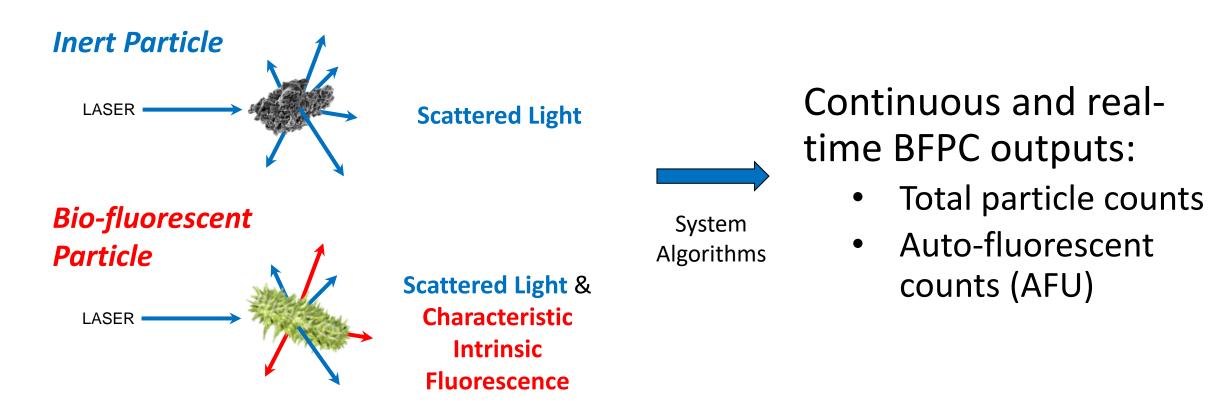

Intrinsic Fluorescence

- Some particles naturally fluoresce through absorption of energy from light and release of this energy as light at a longer wavelength
- All cells contain many such fluorescent molecules with NAD(P)H and Riboflavin being examples that fluoresce under 405nm light

Fluorescent Biological Molecules	Approximate Fluorescent Emission Maximum (nm)*
Phenylalanine	280
Tyrosine	300
Tryptophan	350
NADH	440, 460
NADPH	464
Flavins	535

A paruroctonus scorpion fluorescing under a blacklight (Wikipedia.org)

Autofluorescence of NADH in keratinocytes**


*Ammor, MS. (2007) Recent Advances in the Use of Intrinsic Fluorescence for Bacterial Identification and Characterization. Journal of Fluorescence. 17:455-459. **Mellem D, et al. (2017) Fragmentation of the mitochondrial network in skin in vivo. PLoS ONE (2017) 12(6): e0174469. https://doi. org/10.1371/journal.pone.0174469 cience

Microbial Contamination and Control

03-04 May Northbrook, IL

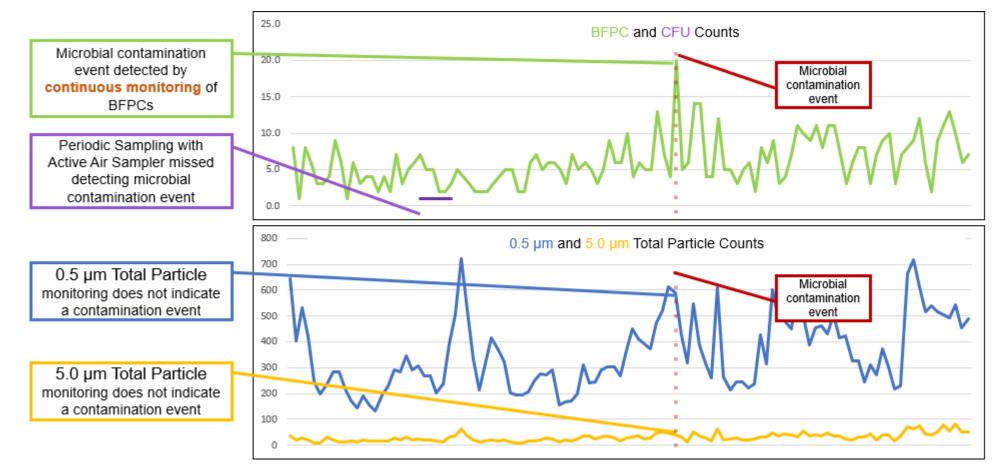
BFPC Technology

* Diagram from Process and Environmental Monitoring Methods working group BFPC Overview presentation

ience

BFPC Detection

- BFPCs are a non-growth-based method
 - The BFPC Auto-Fluorescent Unit (AFU) is a unit that reflects both size and fluorescence of a particle and can detect viable but non-culturable cells in a sample
 - The Colony-forming unit (CFU) is a unit used to estimate the number of viable and culturable bacteria or fungal cells in a sample
- Different method of detection than the traditional growth-based method
 - CFU ≠ AFU
- Similar to a classical particle counter, but enhanced
 - Like a particle counter, BFPC detect scattered light and report total particle counts
 - Unlike a particle counter, BFPC also detect fluorescence and report biologic counts


BFPC Detection

- Advantages
 - Continuous monitoring supports data trending and increased process understanding
 - Real-time results support
 - Timely indication of adverse trends, and
 - Faster root cause identification.
 - Minimization of operator presence in critical environments (air monitoring)
 - Support personnel training due to real-time total particle and biologic count feedback
- Potential Limitations
 - Do not identify
 - Mitigation use the traditional method if an over action event is identified on BFPC
 - Some interferent materials can be classified as an AFU
 - Mitigation understand potential interferents in environment, minimize or replace materials if possible

Process Understanding Comparison

* Diagram from Process and Environmental Monitoring Methods working group BFPC Overview presentation

BFPCs for Environmental Monitoring

- BFPC technology has been available since the early 1990's
 - Initially targeted government applications including bio-terrorism
 - Systems such as the UV-APS, FL-APS3, BioScout, and WIBS
- Around 2009 the first air based BFPC, and in approximately 2015 the first water based BFPC were introduced to the pharmaceutical industry

MicronView BAMS

Air Based BFPC

Azbil Biovigilant IMD-A

PMS BioLaz

TSI BioTrak

Water Based BFPC

Mettler Toledo 7000 RMS Azbil Biovigilant IMD-W

BFPC Applications - Air Monitoring

Monitoring of controlled areas

- Aseptic suites
- Fill lines
- RABS/ Isolator systems
- Compressed gasses
- Media/ water fills
- Gowning Rooms
- Biosafety cabinets/Flow hoods

Monitoring to Return to Production

- Routine maintenance/calibration
- New construction or equipment
- Accelerate return from shutdown

Energy reduction – green initiatives

HVAC flow reduction studies

Risk assessment

- Sample Site Selection
- Dynamic Modeling
- FMEA

Investigations

- EM excursions
- Root cause investigation/troubleshooting
- Verify CAPA effectiveness

Operator training

- Gowning training/qualification
- Aseptic technique

BFPC Applications – Water Monitoring

Production Monitoring

- Purified water
- Water for injection
- Predictive monitoring
- Sanitization

Monitoring to Return to Production

- Routine maintenance/calibration
- New construction or equipment
- Accelerate return from shutdown
- Real-time cleaning verification

Risk assessment

- Grab sample timing & frequency
- Loop component replacement
- Loop health

Investigations

- Excursions
- Root cause investigation/troubleshooting
- Verify CAPA effectiveness

Green initiatives

- Energy savings through sanitization or heating temperature reduction studies
- Maximizing water usage/minimizing down time

Training

Maintenance/Engineering, component replacement.

Microbial Contamination and Control 03-04 May Northbrook, IL

ay ook, IL

BFPC Industry Support

Industry Support

BioPhorum Fill Finish Alternative and Rapid Micro Methods (ARMM) BFPC Team		Process & Environmental Monitoring Methods (PEMM) Working Group
 Air based BFPC focus Started in 2017 	- Air and water BFPC focus - Started in 2014 (Est. 2021)	
Online Water Bioburden Analyz Working Group - Water rapid method focus - Started in 2013	er (OWBA)	Kilmer Community Rapid Microbiology Methods Group - Rapid Micro Method focus - Started in 2019

Life Sciences

Industry Support – M³ Collaboration

Steering • Facilitates Sub-Team meetings, publications, group communication • Organizes annual summit meetings Committee Challenges associated with BFPC implementation Sub-Team #1 • AFU \neq CFU BFPC Validation Establishing baseline Sub-Team #2 Setting Alert and Action levels Communications toolbox, User Requirements Specification Template Sub-Team #3 Modern Microbial Method Initial Evaluation Roadmap Water BFPC Data Analytics

M³ Collaboration – Virtual Summits

• 4 March 2021:

Speaker: Dr Anthony Cundell, Microbiological Consulting LLC and USP Microbiology Expert Committee

Application of USP<1223> to the Validation of Biofluorescent Particle Monitoring (BFPM)

• 24 February 2022:

Speaker: Dr Anthony Bevilacqua - Mettler-Toledo Thornton and USP Chemical Analysis Expert Committee

Water Based BFPC Test Case Overview and USP Pharm. Waters Expert Panel Current Work

23 February 2023:

Speaker: Caroline Dreyer, Novo Nordisk

Novo Nordisk's Path to BFPC Implementation: Navigating the Maze of Regulatory Expectations

M³ Collaboration – Publication Strategy

- Teaser article
 - Initial Evaluation Roadmap for Modern Microbial Methods
- Umbrella publication strategy
 - Overarching article Challenges Encountered in the Implementation of BFPC Systems as a Routine Microbial Monitoring Tool
- Sub-articles
 - Understanding the Non-equivalency of BFPCs versus the Colony-Forming Unit (submitted to PDA JPST)
 AFU≠CFU
 - Validation of BFPC for Use in GMP Manufacturing Environments (working on draft)
 - Article focusing on what baseline counts include and how to establish alert and action levels (working on final draft)
 - Article on water-based BFPC Data Analytics
- Toolbox Documents
 - Modern Microbial Method User Requirements Specification Template

Challenges Encountered during BFPC Implementation

M³ Initial Eval Roadmap Validation

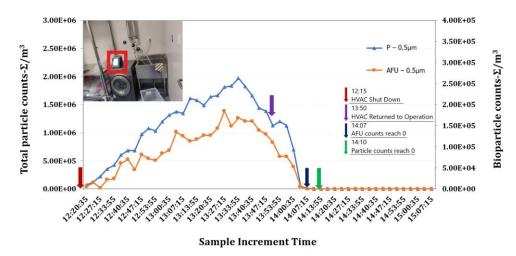
Baseline/Alert & Action Levels

More articles to be added soon...

Email: ModernMicrobialMethods@gmail.com • LinkedIn: www.linkedin.com/company/modern-microbial-methods • Website: www.ModernMicrobialMethods.com

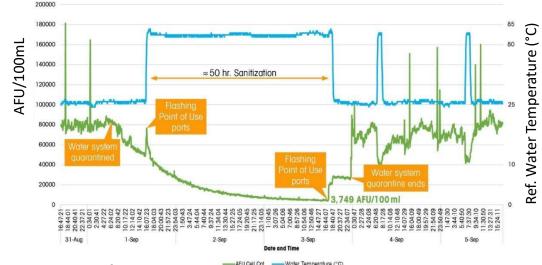
M³ Collaboration – Challenges Article

- Challenges Encountered in the Implementation of BFPC Systems as a Routine Microbial Monitoring Tool
 - Published in PDA JPST July 2022
 - <u>https://journal.pda.org/content/e</u> arly/2022/07/15/pdajpst.2021.012 726
- Discusses potential challenges and ways of mitigating



PEMM – BFPC EM & Troubleshooting Article

Air BFPC


- Case Study #1
 - Cleanroom Shutdown & Recovery

- Case Study #2
 - Verification of Low Particulate Wall Refurbishment Technology

Water **BFPC**

• Case Study #3

- Case Study #4
 - Diagnosis of Non-Biological Water Loop Particulates

Hooper S, et al. Advanced Environmental Monitoring and Troubleshooting with Bio-Fluorescent Particle Counters: Four Case Studies from the Process and Environmental Monitoring Methods Working Group. Eur Pharm Rev, Oct 2022

• Troubleshooting a contaminated WFI system

2018-2022 Industry Publications & Webinars

- Montenegro-Alvarado JM, et al. Pfizer case study: rapid microbial methods for manufacturing recovery after Hurricane María. Pharm Online. 2018 July
- Montenegro-Alvarado JM. Pfizer Leveraging rapid microbiological methodology in forensic evaluation to identify elusive root cause. *Amer Pharm Rev. [Internet]*. 2018 Sep
- Online Water Bioburden Analyzer Workgroup. A better approach to pharmaceutical water testing user requirements for an online water bioburden analyzer. *Pharm Online*. 2018 Nov
- Weber J, et al. **BPOG** Continuous microbiological environmental monitoring for process understanding and reduced interventions in aseptic manufacturing. *PDA J Pharm Sci Technol.* 2019 Mar/Apr;73(2):121-134
- Russ M. Genentech Webinar Changing a Paradigm: Implementing a Real Time Microbial Detection Analyzer in Pharmaceutical Water. Amer Pharm Rev. 2019 Mar 14
- Ayers F, et al. PEMM Bio-Fluorescent Particle Counter-Based Real-Time Feedback and Control of Processing Conditions, Eur Pharm Rev, Aug 2019 ed.
- Benkstein K, et al. Evaluating changes to *Ralstonia pickettii* in high-purity water to guide selection of potential calibration materials for bioburden analyzers. *J Ind Microbiol Biotechnol.* 2019 Jul; 46: 1469-1478.

2018-2022 Industry Publications & Webinars

- Bar R. Charting and Evaluation of Real-Time Continuous Monitoring Water Bioburden. PDA J Pharm Sci Technol. 2019 Sep; 73 (5) 496-509
- Prasad A, et al. BPOG Practical applications of bio-fluorescent particle counting in Environmental Monitoring Investigations. PDA J Pharm Sci Technol. 2020 Jan/Feb;74
- Hjorth J, et al. GMP Implementation of Online Water Bioburden Analyzers. *Pharmaceutical Engineering*. 2021 Jan/Feb
- Scott A, et al. PEMM A Discussion on Bio-Fluorescent Particle Counters: Summary of the Process and Environmental Monitoring Methods Working Group Meeting with the FDA Emerging Technology Team. Pda J Pharm Sci Technol. 2021
- Briglia C, et al. M³ Initial Evaluation Roadmap for Modern Microbial Methods. *PDA Letter.* 2022 Apr
- Scott A, et al. M³ Challenges Encountered in the Implementation of Bio-Fluorescent Particle Counting Systems as a Routine Microbial Monitoring Tool. Pda J Pharm Sci Technol. 2022
- Hooper S, et al. PEMM Advanced Environmental Monitoring and Troubleshooting with Bio-Fluorescent Particle Counters: Four Case Studies from the Process and Environmental Monitoring Methods Working Group. Eur Pharm Rev. 2022 Oct
- Behrens D, et al. Application of Biofluorescent Particle Counters for Real-Time Bioburden Control in Aseptic Cleanroom Manufacturing. Appl Sci. 2022 Aug.

Conclusions

- BFPCs are a modern microbial method that have been used in the Pharmaceutical industry for over a decade
- BFPCs offer:
 - Continuous sampling better process understanding and trending
 - Real-time results proactive instead of reactive response
 - Automated testing improved data integrity and reduced risk to process
- Industry working groups continue to collaborate on the implementation, testing and validation of BFPC systems to support broader adoption and awareness

Microbial Contamination and Control Northbre

Thank you!

Allison Scott, Principal Scientist a.scott@micronview.com