

-

Sterility Assurance & Quality Risk Management Conference

October 25th & 26th

Sterility Assurance: Key Considerations to Maintain Compliance

810

David Turner, Global Technical Consultant

October 25th & 26th

Agenda

- Contamination control strategy and risk assessment
- Proven engineered and automated controls
- Integrating manual and automated approaches pragmatically
- Sterility assurance with holistic thinking

October 25th & 26th

Sterility Assurance & Probability

- Toss a coin
 - Heads = Sterile
 - Tails = Non-Sterile
- Roll a die
 - 1 5 = Sterile
 - 6 = Non-Sterile
- Probability of pulling the ace of spades

October 25th & 26th

Sterility Assurance

- Minimum probability of non-sterile: 1 in 1,000,000
- Sterility assurance is not an absolute; directly linked to changes in the controls, or the introduction of variables.
- Build into the manufacturing process as variables to the process must be understood and controlled
- Anything which moves the process away from its validated controlled state has the potential to impact sterility assurance

October 25th & 26th

Contamination Control Strategy

- Regulatory Requirements and Guidance
 - EC Annex 1 GMP for Sterile Products
 - PIC/S Good Manufacturing Practices
 - FDA Guidance GMPs for Sterile Products from Aseptic Processing
 - ICH Q9 Quality Risk Management

Best practices approach

- Risk Assessment
 - Map all manufacturing areas, equipment and activities (including transfers) with relevant classifications
 - Identify risk of microbial intrusion
 - Develop understanding of microbiological bioburden and their decontaminants in each area
 - Determine frequencies of cleaning and decontamination based on activities, surfaces and risk

October 25th & 26th

October 25th & 26th

Legacy approach Control the aseptic core primarily

INSIDE OUT

- ◆ ISO 5 Grade A/B classified areas Aseptic Core
 - ◆ Engineered controls HVAC, Pressure cascade
 - Full gowning and aseptic behavior expected
 - Airlocks and pass-throughs
- ◆ Risks
 - ◆ Contamination can still appear
 - Engineering controls taken for granted as 'enough'

October 25th & 26th

Better approach

Control origins of contamination as well as the aseptic core

OUTSIDE IN

- ISO 5 cleanroom, isolator, closed instruments are not separate entities in a GMP environment
- Pragmatic thinking of adjacent ISO 7-8 areas (Grades C-D)
- Consider control of CNC areas adjacent to cleanroom

Miltenyi CliniMACS Prodigy

October 25th & 26th

Improvements to risk

Outside In

- Reduce source of contaminants People, materials, variability in cleaning and disinfection
- Influence reduction of cross-contamination
- Additive thinking for contamination control and reduction of human variability in cleaning and disinfection

October 25th & 26th

Engineered design to reduce risk

- Surface materials are cleanable, maintained in good condition
- HVAC calibrated and monitored
- Doors/seals checked and good condition
- Process equipment for containment, RABS or isolators (understand limitations)

Courtesy of Instant Cleanroom Solutions

Approach for Selecting Manual Decontamination Agents

Identifying appropriate cleaning and disinfection agents

Aseptic core and beyond

- Select appropriate cleaning agent: detergent, surfactants
- Select appropriate disinfectant:
- ✓ Manual, broad spectrum rotated with a sporicide (automated H₂O₂ Vapor)
- Rinsing agents should be available: Water for Injection, IPA

Automated Approach to Contamination Control

A choice for efficiency and consistency in controlling contamination

- Use of isolators/closed systems to reduce risk of contamination to process
- Use of automated room decontamination (H₂O₂ Vapor) to reduce variability from manual disinfection practices

October 25th & 26th

Hydrogen Peroxide Vapor Technology

Bio-decontamination cycles in as little as 30 mins in isolators

Validated, 6-log sporicidal kill* on exposed surfaces, verified with *Geobacillus Stearothermophilus*

Compatible with sensitive materials and products

Breaks down into oxygen and water vapor with no additional wipe downs needed

Efficacy against a wide spectrum of microorganisms

Automated bio-decontamination can replace human intervention

- Any room decontamination with hydrogen peroxide vapor replaces manual activity with mops, wipes and spray
- Consistent, validated, efficient, cGMP
- ◆ Pass-thru or MAL decontamination
- Aseptic core, ISO 5, containment with built-in H₂O₂ system
- H₂O₂ Vapor Technology can be contracted or performed internally

Isolator Systems vs Biological safety cabinets Environments for aseptic processing

VS

October 25th & 26th

Biological Safety Cabinets Overview

ADVANTAGES

- Provides some protection for a critical process
- Lower capital cost compared to most isolator systems

DISADVANTAGES

- Open to the environment/operator, putting critical process at risk of contamination
- Must be located in grade B cleanroom, increasing running costs

A Systems approach to contamination control

A choice for efficiency and consistency in controlling contamination

Use of isolators/closed systems

- A complete barrier eliminates risk of environment/operators contaminating process
- **Pressure cascades** prevent entry of 'dirty' air into isolator
- Note: EU GMP Annex 1 requires
 'open' isolators to be in grade C
 cleanroom, but 'closed' isolators can
 be in grade D

October 25th & 26th

Use of Isolators for Sterility Testing

Must be performed to release **all** sterile medicines and products to the market

Failed test due to a false positive results in unnecessary investigation, halting production, loss of product

Isolators should be used to protect process from environmental contamination

Minimising the risk of false positives

October 25th & 26th

Best Practice

All manufacturing-related areas

- Develop a full facility control approach based on risk assessment of adjacent areas and potential for cross contamination
- Clean areas based on risk
- Automate disinfection for consistency and fit for manufacturing schedule
- Combining automated and manual approaches in a robust, efficient plan
- Train and maintain personnel aseptic practices in any classified area

How can you drive contamination control?

October 25th & 26th

Significance of infrastructure control

Adjacent to aseptic core

- Maintenance
- Cleaning
- Disinfection
- Operator traffic flow and restrictions
- Physical controls for manufacturing rooms Diff. pressure Temperature Humidity
 - Air changes

Courtesy of Class One Cleanroom Systems Inc.

October 25th & 26th

Monitor and observe contamination control

Consistency is key!

- Monitor engineered controls from Grade A to CNC
- Observe facility design and personnel aseptic behavior, skills and gowning
- Training ongoing
- Material decontamination and transfer

October 25th & 26th

Your Bio-decontamination Program

Summary

- Holistic contamination control Integrated across your facility and processes
- Pragmatic cleaning with combined automated and manual decontamination meets your needs for efficiency and consistent, effective facility control
- Impact your key parameters of concern:
 reduced chemicals, reduced residues
 - validated processes
 - efficient and effective labor (resources)
 - more production 'run time'

October 25th & 26th

Thank you!

Any questions?