

October 25th & 26th

Terminal Sterilization of Drug Products

John Schlecht VP Technical Services – Sterigenics jschlecht@sterigenics.com

October 25th & 26th

Gain an understanding of.....

- Difference between Aseptic Assembly and Terminal Sterilization
- Concept of a Sterility Assurance Level and how it is determined
- Different Modalities of Terminal Sterilization Available
- Process Definition steps for a Radiation Sterilization Process
- Examples of Drug/Pharma Product Terminally Sterilized
- Understand how Sterility of a product is a holistic process and not just "Sterilization"

October 25th & 26th

There are two (2) strategies to produce a sterile drug product:

October 25th & 26th

Maintain sterility of a product that is assembled from components, each of which has been previously sterilized

Sterile

Terminal Sterilization

Exposure to a physical or chemical sterilizing agent for a predetermined extent of treatment

Sterilized

October 25th & 26th

Sterile = Sterility Assurance Level (SAL) $\leq 10^{-6}$

SAL likelihood of surviving organisms

 $10^{-1} = 1:10$ $10^{-2} = 1:100$ $10^{-3} = 1:1,000$ $10^{-4} = 1:10,000$ $10^{-5} = 1:100,000$ $10^{-6} = 1:1,000,000$

October 25th & 26th

- Is there any magic regarding 1 in 1 million?
- Why selected?
 - Some background in food processing perhaps
 - Nordic Pharmacopeia 1970 selected 10⁻⁶
 - NASA selected 10⁻⁴ in 1960s for spacecraft
 - Scientific rationale for the 10⁻⁶ value?

None!

 Srun, et al in 2012 : At 10⁻³ and 10⁻⁴ generally no potential impact to patients

October 25th & 26th

Terminal Sterilization

The Terminal Sterilization cycle is **validated** to achieve an SAL equal to or less than a specified value

October 25th & 26th

Sterility Assurance

is NOT:

- A product sterility test result
- A sterilization cycle
- A BI or dosimetry test result

<u>Components</u> of Sterility Assurance

- Product design
- Manufacturing
- Packaging
- Sterilization
- Process and associated testing

ISO TS 19930 definition:

"Assurance of sterility: qualitative concept comprising all activities that provide confidence that product is sterile"

October 25th & 26th

Use a **structured approach** to select the most appropriate sterilization method

Based on CPMP/QWP/054/98 Decision Tree for the selection of sterilization methods

October 25th & 26th

October 25th & 26th

Radiation

Nanosuspensions Lyophilized product

Dry Powder/ API

Single Use Systems

Ethylene Oxide

October 25th & 26th

Sterilization by Irradiation – General principles

Two methods to produce radiation:

October 25th & 26th

Sterilization by Irradiation – General principles

Gamma and X-Ray Radiation

Absorbed Dose in kGy \rightarrow 1 Gray (Gy) = 1 Joule/kg \rightarrow 1 kGy = 1000 Gy

October 25th & 26th

Terminal Sterilization Using Gamma Radiation

Penetration

Dose Uniformity Ratio (DUR) \rightarrow Ratio Maximum dose absorbed to minimum dose absorbed

October 25th & 26th

Terminal Sterilization Using Gamma Radiation

Isotropic radiation flux

Process Variables

- Irradiation Pathway
- Cycle time
- Load configuration

Process Characteristics

- Time: order several hours
- Heating: non-adiabatic
- Typically different product irradiated together

October 25th & 26th

In the irradiator above each irradiation container is the size of half an industrial pallet

Courtesy MDS Nordion

October 25th & 26th

E-Beam Facility Layout

October 25th & 26th

X-Ray Facility

Accelerate Electrons \rightarrow Strike a Target \rightarrow Create X-Rays

October 25th & 26th

Process Definition and Process Validation (ISO 11137-1*)

Process Definition

Establishing dose specification for product (Sterilization dose and maximum acceptable dose)

Process Validation

Establishing irradiation process that will render product within its dose specification

*Radiation sterilization standard for medical device product

October 25th & 26th

Bioburden Determination

- Determine amount and types of viable microorganisms present on the product (during manufacturing and packaging)
- Measured in Colony Forming Units (CFU)

October 25th & 26th

Sterility Assurance Level (SAL)

- 'Sterile' usually implies an SAL (Sterility Assurance Level) of 10⁻⁶, meaning, at maximum, 1 in 1,000,000 manufactured and sterilized products is non-sterile
- A D₁₀ value describes the amount of dose required to reduce our bioburden by 90% (or to reduce by 1 Log)
- This value allows us to extrapolate the sterilization dose from high SAL levels (say 10⁻¹ or 10⁻²) to the required level for sterilization

October 25th & 26th

Example D₁₀ = **2.0 kGy**

Standard distribution of resistance

D ₁₀	1.0	1.5	2.0	2.5	2.8	3.1	3.4	3.7	4.0	4.2
(kGy)										
Probability	65.487	22.493	6.302	3.179	1.213	0.786	0.350	0.111	0.072	0.007
(%)										

October 25th & 26th

Methods of Minimum Dose Establishment (D_{ster})

<u>ISO 11137-1</u>

- 8.2 Establishing the sterilization dose
- 8.2.1 The sterilization dose shall be established for product

Methods typically used are per ISO 11137-2

Method VD_{max} Method 1

Method 2

Methods of Minimum Dose Establishment (D_{ster})

Method VD_{max}

Advantages

- Least number of samples needed
- Samples for dose establishment = 48
- Shorter turn time than Method 2

Disadvantages

- Lowest possible sterilization dose is 15 kGy
- Only an SAL 10⁻⁶ is possible

<u>Method 1</u>

Advantages

- Alternative SAL's possible
- Minimum dose can be as low as 11.0 kGy
- Based on specific product bioburden Could have lower sterilization minimum dose than for Method VDmax
- Shorter turn time and fewer samples than Method 2

Disadvantages

Larger number of samples needed than for Method VD_{max}

Standard distribution of resistance (SDR) used in Method VDmax and Method 1

D ₁₀	1.0	1.5	2.0	2.5	2.8	3.1	3.4	3.7	4.0	4.2
(kGy)										
Probability	65.487	22.493	6.302	3.179	1.213	0.786	0.350	0.111	0.072	0.007
(%)										

October 25th & 26th

Methods of Minimum Dose Establishment (D_{ster})

Method 2

Resistance of the microorganisms sets a product-specific dose – **Essentially establish D₁₀ for the bioburden present on the specific product**

Advantages

- Possible to set a low minimum dose of 8.3 kGy for SAL 10⁻⁶ (Possibly even 6.4 kGy for "Zero Bioburden" Pharma product that is aseptically packaged)
- Alternate SAL's possible
- Validate products that have failed VD_{max} and Method 1

Disadvantages

- Large number of samples needed for testing
- Approximately 500 to 800 samples for dose establishment
- Long turn time for completion of the validation (12-16 weeks)

October 25th & 26th

Maximum Dose Establishment (D_{max,acc})

<u>ISO 11137-1</u>

8.1 Establishing the maximum acceptable dose

8.1.1 The maximum acceptable dose for product shall be established. When treated with the maximum acceptable dose product shall meet its specific functional requirements throughout its defined lifetime

Example: 25-40 kGy Dose Range, Max. dose testing done at or above 40 kGy

- Several dose points should be tested in order to determine D_{max,acc}
- Keep in mind the difference between a specification of 25 37kGy (Max to min specified dose ratio of 1.48) is significantly more difficult to achieve in routine than a specification of 25-40 kGy (Max to min specified ratio of 1.60). It could mean the difference between a "capable" process and a process that is "not capable". Even better to get 42 kGy or 43 kGy.
- A few kGy "extra" in either the minimum or maximum dose can be significant!

October 25th & 26th

D_{ster} and **D**_{max,acc} are related

Radiation Sterilization mitigation possibilities

D_{ster} other than 25 kGy Exist!

- Lower Sterilization dose (11 kGy/8 kGy)
- Establishing a Lower D_{ster} can result in lower maximum dose to the product
- Freeze (impede diffusion of reactive species in product)
- Inert atmosphere inside package (reduce oxidation effects)

October 25th & 26th

Example of dose delivery characteristics for powder filled vial

October 25th & 26th

PQ Example: Powder Filled Vials (Gamma or X-Ray)

Gamma

- Glass vial with powder
- Cold chain management (temperature ≤ -20 °C)
- Dose uniformity requirement

 $D_{max,acc}/D_{ster}$ = 1.50

- Product trays able to be loaded to design specification
- Several 1000 vials per irradiation container
- Able to achieve D_{max} / D_{min} approximately 1.20

October 25th & 26th

Irradiation Using Gamma (Co-60): Example Irradiator For Pharma Product

Sterigenics Fleurus Facility – Batch Irradiator

Dedicated processing, per batch

Process can be customized

Example: Powder Filled Vials (Electron Beam)

Monte Carlo calculation of dose distribution in single vial (electron beam irradiation)

- 10 MeV electrons
- 1 cm fill height inside the vial
- 1.50 DUR Required

(★) Dmax / (★) Dmin = **1.4**

October 25th & 26th

Example: Powder Filled Vials (Electron Beam)

Product tray with sufficient spacing between vials so they can be considered as individual

Gamma or X-Ray

- Several 1000 vials per irradiation container in Gamma example
- No spacing between vials required
- Dosimetry: average ratio of maximum dose to minimum dose = 1.20

October 25th & 26th

Think about Sterilization as soon as Possible During Product Development

October 25th & 26th

Takeaways.....

- Difference between Aseptic Assembly and Terminal Sterilization
- Concept of a Sterility Assurance Level and how it is determined
- Different Modalities of Terminal Sterilization Available
- Process Definition steps for a Radiation Sterilization Process
- Examples of Drug/Pharma Product Terminally Sterilized
- Understand how Sterility of a product is a holistic process and not just "Sterilization"